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This paper provides the mathematical tools for addressing issues of two kinds of causality
in relativistic scattering theory: general causality, i.e., an effect can only be measured
after its cause, and Einstein causality, i.e., no propagation of probability outside of the
forward light cone. Starting from Wigner’s unitary irreducible representations of the
Poincaré group for noninteracting, one particle states, we describe the mathematical
tools necessary to describe scattering states, the Lippmann–Schwinger Dirace kets, and
to describe resonances and decaying states, the relativistic Gamow ket. An important
step for their derivations is the Hardy space hypothesis. Investigating the transformation
properties of scattering and resonance states under the dynamical Poincar´e semigroup
reveals that both kinds of causality result from this hypothesis about nature of the spaces
of states and observables.
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1. INTRODUCTION

Relativistic quantum fields are constructed from the unitary irreducible repre-
sentations (UIR) of the Poincar´e groupP (Weinberg, 1995; Wigner, 1939, 1964)
of space-time transformations. Elementary relativistic quantum systems are as-
sociated with the UIR characterized by real invariantsm and j , representing the
particle mass and spin.

The UIR of the Poincar´e group describe stable elementary particles (stationary
systems), but stable particles are in the minority. For longlived unstable particles,
characterized by a small inverse lifetime0, the UIR can provide an approximate
description. However, the process of decay cannot be modeled by the UIR. In the
case of short-lived particles with large width0, such as resonances in a scattering
experiment, the approximation of the particle by UIR becomes even more suspect.
As a result, some have claimed that resonances are more complicated objects than
stable particles and preclude their description by state vectors. Our opinion is the
opposite: stable elementary particles are not qualitatively different from unstable
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particles, only quantitatively different in their value of0, with 0 = 0 for stable
particles.

Previous work (Bohmet al., 2000) provides a partial mathematical solution to
this problem of representing relativistic unstable particles by introducing a special
class of (nonunitary) semigroup representations of the Poincar´e group. In (Bohm
et al., 2000), these representations were used to define relativistic Gamow vectors,
allowing a description for unstable particles in terms of nonunitary irreducible
representations (the semigroup representations) analogous to the description of
stable particles by UIR. One application of these representations and the relativis-
tic Gamow vector has been to the controversy over the parameterization of the
lineshape of relativistic resonances.

After providing the necessary background, we wish to show how the trans-
formation properties of the Poincar´esemigrouprepresentations allow for a causal
theory of relativistic scattering and unstable particles. Issues of causality have
vexedquantum theory for a long time, and the resolution of these issues is one of
the strengths of using semigroup representations for the construction of the wave
functions of unstable particles. What follows addresses both the general issue of
causality and Einstein causality, i.e., no propagation faster than the speed of light,
by looking at the Born probabilities for detecting decay products of unstable par-
ticles. A more detailed analysis can be found in (Bohmet al., 2002); an analysis
focusing more specifically on the causality issues is in preparation (Bohm and
Harshman, in preparation).

2. TRANSFORMATION PROPERTIES OF THE ONE PARTICLE,
NONINTERACTING REPRESENTATIONS OF THE
POINCARÉ GROUP

Wigner’s classic paper (Wigner, 1939, 1964) established that the interaction-
free one particle states furnish a unitary irreducible representation (UIR) of the the
Poincaré groupP. Here we will discuss only the projective representations of the
semidirect product of the group of proper, orthochronous Lorentz transformations
3 ∈ SO(1,3) and the group of space–time translationsx ∈ R4. Wigner classified
the irreducible representations ofP which are labeled by two number identified
with the mass squareds= m2 = pµpµ and spinj of the particles.

The Dirac kets form a basis for a particular UIR to expand a given state vector
φ of the UIR (s, j ):

φ =
∑
ξ

∫
d3p̂
2p̂0
|p̂, ξ (s, j 〉〉〈p̂, ξ (s, j )|φ〉, (1)

where we have chosen the invariant measure

dµ(p̂) = d3p̂
2p̂0

, p̂0 =
√

1+ p̂2, (2)
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which implies the normalization

〈p̂, ξ (s, j )|p̂′, ξ ′(s, j )〉 = 2p̂0δ3(p̂− p̂′)δξξ ′

= 2p0sδ3(p− p′)δξξ ′ . (3)

Here we use the 4-velocity basis of Dirac kets|p̂, ξ (s, j )〉, where p̂µ = pµ/
√

s
andξ is the discrete spin component along a particular axis,− j < ξ < j . Since
the momentum is constrained to the mass shell in the UIR (s, j ), the vectors
can be labeled by the three spatial componentsp̂ = p/m= γ v of the 4-velocity
p̂ = p/m, whereγ = 1/

√
1− v2 = p̂0. The 4-velocity basis is equivalent to the

standard Wigner (momentum) basis|p, ξ (s, j )〉 except for normalization, however
it will be preferable for constructing the minimally complex representations of the
Poincaré semigroup (see below and reference (Bohmet al., 2000) for further
explanation and justification of the use of the 4-velocity basis).

The Dirac ket|p̂, ξ (s, j )〉 is what we conceptually associate to a microphys-
ical state, such as a particle which leaves a track in a detector, and are the units
out of which quantum fields are built (Weinberg, 1995). However, the Dirac ket,
and also the Dirac basis vector expansion (1), requires mathematical apparatus
beyond the Hilbert space. The Dirac basis vector expansion does not hold for all
vectors in the Hilbert spaceH(s, j ) of the Poincar´e group, but only for a suitably
chosen (i.e., nuclear) dense subset8 ⊂ H(s, j ). Then the linear topological dual
of 8, the space8× of antilinear functionals on8, contains the Dirac kets (Bohm
and Gadella, 1989), and in particular the basis vectors for the complete set of
commuting operators (CSCO) of the Poincar´e algebra chosen for the expansion.
Usually one takes for the space8 the space of differentiable vectors of the unitary
representationU (3, x) and endows it with a countably-normed topology defined
by the Nelson operator (Bohm, 1973); it is sufficient to specify the space8 so
that if ψ ∈ 8 ⊂ H(s, j ), the functionsψ(p) of the momentump (or 4-velocity
p̂ = p/m) are smooth rapidly decreasing functions (Schwartz space functions).
Then the basis vectors|p̂, ξ (s, j )〉 are elements of the dual space8× of the subset
of differential vectors8 ⊂ H(s, j ). For vectorsφ ∈ 8 ⊂ H(s, j ), Dirac’s basis
vector expansion holds.

Within this mathematical framework, the action of the Poincar´e transforma-
tion (3, x) ∈ P on the Dirac kets can be mathematically defined and is given by
the standard formula (Weinberg, 1995):

U×(3, x)|p̂, ξ (s, j )〉 = e−i p·x ∑
ξ ′

D j
ξ ′ξ (W(3−1, p))|3−1p̂, ξ ′(s, j )〉

= e−i γ
√

s(t−v·x)
∑
ξ ′

D j
ξ ′ξ (W(3−1, p))|3−1p̂, ξ ′(s, j )〉 (4a)

for 3 ∈ SO(1, 3), t ∈ (−∞,∞), and x ∈ R3. (4b)
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Here v is the three velocitŷp = γ v and W(3−1, p) = L−1(3 p̂)3L( p̂) is the
Wigner rotation. For later results, it is important to note that the standard boost
L( p̂) and therewithW(3−1, p) depends upon̂pnot upon the momentump = √sp̂.

Usually in place of U×(3, x) one writes U †(3, x) = U−1(3, x) =
U−1(3−1,3−1x). However, since in (4) the basis vectors are Dirac kets,
|p̂, ξ (s, j )〉 ∈ 8× ⊃ H(s, j ), we use the notationU×(3, x). The superscript×
denotes the unique extension of the unitary operatorU †(3, x) ⊂ U×(3, x) to the
dual space of functionals8× of a Gelfand triplet:

8 ⊂ H(s, j ) ⊂ 8×. (5)

3. THE LIPPMANN–SCHWINGER DIRAC KETS AND
RELATIVISTIC GAMOW KETS

For our analysis of unstable states and causality, we need the transformation
properties for the interacting, multiparticle states, not just for the one particle,
interaction-free kets. The Lippmann–Schwinger kets are theinteracting in- and
out-plane wave states of, for example, a scattering experiment with formation of
a resonanceR by the process:

1+ 2→ R→ 3+ 4. (6)

The Lippmann–Schwinger Dirac kets are used in the expansion of the in-states
φ = φ1× φ2 and out-states (out-observables)ψ = ψ3× ψ4, such as in theS-
matrix scattering amplitude

(ψout, Sφ in) = (ψ−, φ+)

=
∑
j ,ξ

∫ ∞
smin

ds
∫

dµ(p̂)〈−ψ |p̂, ξ (s, j )−〉Sj (s)〈+p̂, ξ (s, j )|φ+〉. (7)

To construct the incoming and outgoing Lippmann–Schwinger kets for
processes like (6) (and eventually to construct the relativistic Gamow vector),
we start with the the direct product spacesH12 ≡ H(m2

1, j1)⊕H(m2
2, j2) and

H34 ≡ H(m2
3, j3)⊕H(m2

4, j4) of the two incoming and outgoing particles.2 The
direct product of the representation spaces for particles 1 and 2 is not irreducible,
but can be broken into a direct sum of UIRs:

H12 ≡ H
(
m2

1, j1
)⊕H(m2

2, j2
)

=
∫ +∞

(m1+m2)2
ds

∞⊕
j=0

⊕
{n}
Hn(s, j ), (8)

wheres= pµpµ = (p1+ p2)µ(p1+ p2)µ is the total invariant mass square of the
system of particles,smin = (m1+m2)2, j is the total spin and the setn carries the

2 Processes involving more than two body reactions can be handled similarly, but the Clebsch–Gordan
coefficients for combining more than two representations quickly become unwieldy.



P1: JQX

International Journal of Theoretical Physics [ijtp] pp994-ijtp-473604 November 12, 2003 1:41 Style file version May 30th, 2002

Representations of the Poincar´e Semigroup and Relativistic Causality 2361

information of the masses and spins{m1, m2, j1, j2} of the original particles and
also the degeneracy labels arising from the angular momentum coupling scheme
(such as spin–orbit or helicity coupling).

As with the Dirac kets for one particle, interaction-free kets, Dirac kets for the
two-particle (interaction-free) are not vectors in the Hilbert spaceH12. Defining
again a dense subspace ofH12 of vectors whose realizations are sufficiently well-
behaved functions of the spatial components of the 4-velocity and also the inverse
mass-squareds, another Gelfand triplet for the direct product space can be defined
and the velocity eigenkets|p̂, ξ (s, j , n)〉 provide a basis for the dense subspace
of each UIR in the direct sum. They are eigenkets of the total energy-momentum
operators (H = P0, P) with eigenvalues

pµ = (p1+ p2)µ = (p3+ p4)µ, s= pµpµ, (
√

s1+√s2)2 ≤ s < ∞. (9)

Clebsch–Gordan coefficients for the Poincar´e group connect the direct product
basis kets|p̂1, ξ1(s1, j1); p̂2, ξ2(s2, j2)〉 to the velocity eigenkets of the irreducible
representations of the direct product space|p̂, ξ (s, j , n)〉. (For the velocity basis
Clebsch–Gordan coefficients, see (Bohm and Kaldass, 1999); see the references
of that article for the classic papers.)

To incorporate the effects of the interaction (and the boundary conditions of
a scattering experiment), the Lippmann–Schwinger Dirac ket basis can be con-
structed from the eigenkets of the UIR of the direct product spaces. The in- and
out-Lippmann–Schwinger scattering states are defined in formal scattering theory
by applying the Møller operatorsÄ± to the rest velocity eigenkets (p̂ = 0),

|0, ξ (s, j )±〉 = Ä±|0, ξ (s, j )〉

=
(

1+ 1√
s− H ± i ε

)
|0, ξ (s, j )〉 (10)

where H is the exact interaction Hamiltonian. They provide an alternate basis
for the UIR of the two-particle system labeled by (s, j ) and are eigenkets of
the interaction–incorporating operatorsp̂ = p/

√
s. We will assume that the to-

tal interacting system remains Poincar´e invariant and so the total operators of
the interacting algebra are the exact generators of the Poincar´e transformations
for the interacting (two-particle) system (Weinberg, 1995). Because of this, the
Lippmann–Schwinger kets|p̂, ξ (s, j )±〉 with any velocityp̂ can be obtained from
|0, ξ (s, j )±〉 by applying a Lorentz transformation by the standard boostU (L( p̂))
whose parameters are the 4-velocitiesp̂. This assumption, however, is not univer-
sally accepted and may be an oversimplification, especially in the case where the
interaction can couple a state to infinitely many zero-mass representations, i.e., the
“infraparticle problem” (Haag, 1996; Schroer, 1963).

From the Lippmann–Schwinger Dirac kets, it becomes possible to construct
the relativistic Gamow vector to represent resonances and decaying states (Bohm
et al., 2000, 2002). If there is a resonanceR of spin j in the scattering process
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(6), then thej -th partial S matrix Sj (s) of (7) has a pole in the second sheet of
the lower half plane ats= sR = (M − i0/2)2. We choose to parameterize the
complex pole positionsR by two real parameters (M, 0) in this way to ensure the
consistency of the relation0 = h̄/τ , whereτ is the lifetime of the resonance (Bohm
and Harshman, 2000). By contour integration around the pole (which requires
analyticity conditions for the spaces of states{φ+} ∈ 8− and observables{ψ−} =
8+, described below), one defines a generalized state vector (ket) which can be
shown (Bohmet al., 2002) to have a relativistic Breit–Wigner energy distribution

〈ψ−|p, ξ (sR, j )〉 = − i

2π

∮
ds〈ψ−|p̂, ξ (s, j )−〉 1

s− sR

= i

2π

∫ +∞I I

−∞I I
ds〈ψ−|p̂, ξ (s, j )−〉 1

s− sR
for all ψ− ∈ 8+,

(11)

and which corresponds to a relativistic Breit–Wigner amplitude in thej -th partial
scattering amplitude. This ket|p̂, ξ (sR, j )−〉 which we call a relativistic Gamow
vector, is a generalized eigenvector of the self-adjoint total invariant mass-squared
operatorPµPµ = H2− P2 with complex eigenvaluesR = (M − i0/2)2. It fulfills
the same conceptual role as the Dirac ket did for stable particles: we identify it
with the microphysical state of a decaying particle or resonance.

4. TRANSFORMATION PROPERTIES OF THE
LIPPMANN–SCHWINGER DIRAC KETS AND THE
RELATIVISTIC GAMOW KET

In the previous section, we have applied the Møller operators to the Dirac
eigenkets to produce the Lippmann–Schwinger scattering states, and from them
defined the relativistic Gamow vector for representing resonances and decaying
states. We did this without considering what analytical properties are required of
the wave functions〈−p̂, ξ (s, j )|ψ−〉 and〈+p̂, ξ (s, j )|φ+〉 in (7) for these manip-
ulations to make sense. We can think of the restrictions required for the spaces of
states and observables as the boundary conditions imposed by the physical nature
of the scattering experiment. The important result of this paper is that the bound-
ary conditions required by mathematical rigor place constraints on the allowable
Poincaré transformations and that these constraints exactly coincide with the two
notions of causality described in the introduction.

The boundary conditons for the in- and out-Lippmann–Schwinger kets are
expressed by the infinitesimal±i ε in the Møller operators (10), which we take as
the imaginary part of the invariant energy3

√
s→√s± i ε. This requires analytic

3 The usual choice is to give the infinitesimal imaginary part to the componentp0 of the 4-momentum,
but for infinitesimalε it does no matter and we shall therefore give the infinitesimal imaginary part
to the invariant mass

√
s because that can be more easily generalized to finiteε → 0/2.
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continuability of the wave functions〈+p̂, ξ (s, j )|φ+〉 and of the complex conjugate
wave functions〈−ψ p̂, ξ (s, j )−〉 = 〈−p̂, ξ (m2, j )|ψ−〉 at least into the top strip of
the lower complex energy semiplane. This requirement on the wave functions is
stronger than that required for the definition of the Dirac kets, which required
that〈p̂, ξ (s, j )|φ〉 are smooth, rapidly-decreasing functions ofs(andp̂) (Schwartz
space functions) and not necessarily analytic. Instead, the scattering in- and out-
wave functions〈+p̂, ξ (s, j )|φ+〉 and〈−p̂, ξ (s, j )|ψ−〉must be restricted to smaller
subspaces which have sufficient analyticity properties from below or above. These
we call8− and8+, respectively. Then, while the Dirac kets in (4) are elements of
8×, the Lippmann–Schwinger kets are the elements of the duals of these spaces,
i.e., |p̂, ξ (s, j )∓〉 ∈ 8×±.

As a hypothesis, we take for8± the Hardy spaces of the upper and lower
complexs-semiplane, i.e., spaces whose wave functions are analytic in the up-
per (8+) or lower (8−) complex s-semiplanes. This is more than one needs
for the Lippmann–Schwinger kets with infinitesimal Ims= ∓i ε, however to ap-
ply (10) one definitely needssomeanalyticity property of the wave functions
〈−(s, j )p, ξ |ψ−〉 in the upper and〈+(s, j )p, ξ |ψ+〉 in lower semiplane and cannot
addmit all functions of the Schwartz space as wave functions. In addition, the
choice of Hardy space functions will allow us also to continue theSmatrix in (7)
into the lower s-semiplane, e.g., to the pole positionsR = (MR− i0/2)2 of the
resonanceR in (6) and define the relativistic Gamow vector.

Therefore we replace the usual axiom of Hilbert space quantum mechanics

{set of in-statesφ+} = {set of out statesψ−} = H, (12a)

or, when Dirac kets are incorporated,

{set of in-statesφ+} = {set of out statesψ−} = 8 ⊂ H ⊂ 8× (12b)

by the new hypothesis

{set of prepared in-statesφ+} ≡ 8− ⊂ H ⊂ 8×− 3 |p̂, ξ (s, j )+〉 (13a)

{set of detected out-statesψ−} ≡ 8+ ⊂ H ⊂ 8×+ 3 |p̂, ξ (s, j )−〉 (13b)

where8− and8+ are two different dense subspaces of the same Hilbert spaceH.
Since the spaces8+ (8−) are smaller than8, the space8×+ (8×−) are larger

than the space8× (tempered distributions) and the|p̂, ξ (s, j )−〉 ∈ 8×+ are “more
generalized” than the Dirac kets. As a consequence, the transformation formula
(4a) that holds for (4b) does not hold any more for extensions of the unitary operator
U †(3, x) inH to the operatorsU×± (3, x) in 8×± of (13).

From the analyticity conditions (consider the factor exp(−i p · x)), it can be
shown that the extensionU †(3, x) ⊂ U×+ (3, x) is defined only for transformations
into the forward light cone (Bohmet al., 2002). This means the transformations
U×+ (3, x) in8×+ (and therewith also the transformationsU+(3, x) = U (3, x)|8+
in the space8+ of out-statesψ−) do not furnish a representation of the Poincar´e
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groupP but only a representation (s, j ) of the Poincar´e semigroupP+ of proper
othrochronous Lorentz transformations and space–time translations into the for-
ward light cone:

P+ =
{
(3, x)|3 ∈ SO(3, 1), det3 = +1,30

0 ≥ 1;x2 ≡ t2− x2 ≥ 0, t ≥ 0
}
.

(14)

For the transformation property of the Lippmann–Schwinger ket|p̂, ξ (s, j )−〉 ∈
8×+ under Poincar´e transformations one can prove (Bohmet al., 2002) the analogue
of (4a):

〈U+(3, x)ψ−||p, ξ (s, j )−〉 ≡ 〈ψ−|U×+ (3, x)|p, ξ (s, j )−〉
= e−i p·x ∑

ξ ′
D j
ξ ′ξ (W(3−1, p))〈ψ−|3−1p̂, ξ ′(s, j )−〉

(15)

for all ψ− ∈ 8+, but only for t ≥ 0 and t2− x2 ≥ 0. An analogous statement
holds for|p, ξ (s, j )+〉 ∈ 8×− and the transformationU×− (3, x) in 8×− defined for
(3, x) ∈ P− (Poincaré transformations into the backward light cone).

For relativistic Gamow vectors|p̂, ξ (sR, j )−〉 ∈ 8×+, defined by (11) from
the Lippmann–Schwinger Dirac kets|p̂, ξ (s, j )−〉 ∈ 8×+, the transformation of
|p, ξ (s, j )−〉 under (3, x) ∈ P+ has similar form and restrictions:

U×+ (3, x)|p, ξ (sR, j )−〉
= e−i γ

√
sR(t−x·v)

∑
ξ ′

D j
ξ ′ξ (W(3−1, p))|3−1p̂, ξ ′(sR, j )−〉

only for t ≥ 0 and for t2− x2 ≥ 0, (16)

which is again understood as a functional equation over allψ− ∈ 8+ as in (15).
The property thatW(3−1, p) depends upon̂p not upon the momentump = √sp̂
is what allowed us to construct the “minimally complex” representations (sR, j )
by making the analytic continuations of the Lippmann–Schwinger kets to the
Gamow kets

|b, ξ (s, j )−〉 → |b, ξ ′(sR, j )−〉 (17)

in such a way that theb = p̂ remain unaffected, i.e.,̂p is real. Therefore, the
Gamow kets furnish an irreducible representation space characterized by (sR, j )
of the Poincar´e semigroupP+ into the forward light cone.

The transformation property of the Gamow kets (16) is the same as that of the
Lippmann Schwinger kets (15); the only difference is the limit− i0/2→ i 0.
Superficially, (15,16) agree with Wigner’s standard formula (4), except that
they only hold for Poincar´e transformations into the forward light cone and
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not for the whole Poincar´e group. The mathematical derivation of (15) and
(16) under (a precise version of) the hypothesis (13) is given in Bohmet al.
(2002).

The Wigner representation (4) is for the symmetry transformation of an iso-
lated stable particle, the semigroup representation in (15,16) is for the evolu-
tion of an interacting system, e.g., the evolution of a decaying particle due to
some interaction. In the nonrelativistic case, the dynamics of this evolution is
the time translation due to the total Hamiltonian; in the relativistic case the dy-
namics is the transformations into the forward light cone (14). The transforma-
tion (4) are just kinematic transformations and often one associates the Poincar´e
group representations (s= m2, j ) just to interaction-free “asymptotic” states. The
Poincaré transformations for the interacting system (15,16) with exact interaction–
incorporating generators (9) describe thedynamicalevolution. Experimental ver-
ification is possible only for invariance with respect to the semigroup transforma-
tions (14) because all physical transformations are necessarily into the forward
light cone.

5. TRANSFORMATIONS AND CAUSALITY

The semigroup restriction, expressed as

t ≥ 0 (18a)

t2 ≥ x2 ≡ r 2/c2, (18b)

adds a new aspect to the dynamical evolution of the states and observables by
Poincaré transformations (4); it results in the incorporation of causality into quan-
tum mechanical probabilities.

The restrictions (18) are mathematical consequences of the Hardy space hy-
pothesis (13). In turn, the hypothesis (13) is to a large extent suggested by the in-
and out-going boundary conditions of the Lippmann–Schwinger kets. In addition
to not fitting into the Hilbert space framework of quantum mechanics (12a) because
they are kets, the Lippmann–Schwinger kets cannot be made compatible with an
axiom like (12b) which allows only time-symmetric Dirac kets (e.g., Schwartz
space functionals).

We now want to consider the consequences for calculating the probabilities
of detecting the decay products of decaying states or resonances where the hypoth-
esis (12) is replaced with (13) but where none of the other principles of quantum
mechanics are modified. In particular, we shall retain the standard dynamical dif-
ferential equations: the Schr¨odinger equation for states (prepared in-states)φ+ and
the Heisenberg equation for observables (detected out-states)ψ−. Using the solu-
tions of these equationsφ+(t) andψ−(t), we can calculate the Born probabilities
as a function of time, i.e., the probability to detect the observable|ψ−〉〈ψ−| in a
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stateφ+ at timet :

P(t) = Pφ+ (|ψ−(t)〉〈ψ−(t)|) = |〈ψ−(t)|φ+〉|2 (Heisenberg picture)

= Pφ+(t)(|ψ−〉〈ψ−|) = |〈ψ−|φ+(t)〉|2 (Schrödinger picture). (19)

Within the formalism of the time-symmetric Gelfand triplet, hypothesis (12b),
the Born probability can be generalized to incorporate the Dirac kets, giving the
interpretation of probability density to quantities such as|〈φ|p̂〉|whereφ ∈ 8 and
|p̂〉 ∈ 8×.

At issues is the fact that the solutions to the dynamical equationsφ+(t) and
ψ−(t) depend on the properties of the spaces to whichφ+ andψ− belong, the
boundary conditions for the problem. The dynamical equations can be solved with
initial conditionφ+, ψ− ∈ H from (12a) (or equivalently under assumption (12b))
and then the solutions are

φ+(t) = U †(t)φ+ = e−i Htφ+ for −∞ < t < ∞
ψ−(t) = U (t)ψ− = ei Htψ− for −∞ < t < ∞, (20)

where the different sign in the exponent derives from the different signs in the
Heisenberg and Schr¨odinger equations. The result that the dynamical equations
integrate to a unitary, reversible time evolution for Hilbert space vectors was proved
by Stone and von Neumann (Stone, 1932; von Neumann, 1931). Using the solutions
(20), the probabilities (19) can then be calculated for givenφ+, ψ− ∈ H for all
time.

Alternatively, the Hardy space hypothesis (13) can provide the boundary
conditions for the solution, giving the result

φ+(t) = e−i H−tφ+ for 0≤ t < ∞
ψ−(t) = e−i H+tψ− for 0≤ t < ∞. (21)

To be precise, we have used for the generators of time translation the operatorsH±,
the restrictions of the self-adjoint Hilbert space operatorH to the two (different, but
each dense inH) subspaces8±. These solutionsφ+(t) andψ−(t) are the semigroup
solutions of the the Schr¨odinger and Heisenberg equations and the restriction to
positive times is the consequence of (13).4 As a result, using the solutions (21),
the probabilities (19) are predicted forφ+ ∈ 8− andψ− ∈ 8+ only for t ≥ 0, and
not for all time as they were for the time-symmetric hypothesis (12).

4 For example, according to (13) all out-statesψ−, including the time evolved statesψ−(t) =
exp(i H+t)ψ− for any givenψ− ∈ 8−, must also be elements of the Hardy space8+ and this
is only fulfilled for 0≤ t < ∞. (Consequently only for those times is the conjugate operator
(exp(i H+t))× = exp(−i H×+ t) defined as a continuous operator on8×+.) A similar argument holds for
exp(−i H−t)φ+ andφ+ ∈ 8−. This result can be extended to general space–time translations giving
the forward light cone restrictions (18).
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This restriction tot ≥ 0 of the probabilities has a clear interpretation if we
extend the probability interpretation of (19) to include the relativistic Gamow ket
|p̂, ξ (sR, j )−〉 ∈ 8×+ representing a resonance or decaying state, in the same way
as it can be generalized to include Dirac ket and probability densities. The quantity
〈ψ−|p̂, ξ (sR, j )−〉 is the probability amplitude to detect the observable (out-state)
|ψ−〉〈ψ−| in the Gamow ket|p̂, ξ (sR, j )−〉 ∈ 8×+ which represents the resonance
R. We can calculate this amplitude for the Poincar´e-transformed decay product
U (3, x)ψ− in the generalized rest stateψG = |0, ξ (sR, j )−〉. Choosing for the
Poincaré transformation the time translation (3, x) = (1, (t, 0)), we obtain from
(16) the following result, valid only fort ≥ 0:

〈ei H+tψ−|0, ξ (sR, j )−〉 = 〈U+(1, (t, 0))ψ−|0, ξ (sR, j )−〉
= 〈ψ−|U×+ (1, (t, 0))|0, ξ (sR, j )−〉 = 〈ψ−|ψG(t)〉
= e−i γ

√
sRt 〈ψ−|0, ξ (sR, j )−〉

= e−i M Rt e−0t/2〈ψ−|0, ξ (sR, j )−〉. (22)

For precision,U+(3, x) denotes the restriction ofU (3, x) to the dense subspace
8+ andU×+ (3, x) denotes the conjugate ofU+(3, x) in8×+ which is the uniquely
defined extension of the unitary operatorU †(3, x), but only forx satisfying (18).

The result (22) implies that the probability rate to countψ− in a time interval
1t around the timet in the decay of a resonance described byψG decreases
exponentially in time:

|〈ψ−(t)|ψG〉|2 = e−0t |〈ψ−|ψG〉|2 for t ≥ 0, (23)

but no probability is predicted fort < 0. What is this timet = 0 that the semigroup
evolution (21) distinguishes? For states represented by the Gamow ket, this time
can be identified with the finite timet0 at which a state has been created and
subsequently decays, for theK 0 in the processπ−p→ 3K 0, K 0→ π+π− or
the excited atom ine−A→ e−A∗, A∗ → Aγ . Even though the production process
takes finite time, this time can be very short compared to the time scale of decay
process, as in the previous examples. In such cases, the mathematical semigroup
time t = 0 is identfied with the decaying state production timet0. This means an
ensemble of single micro systems (e.g.,K 0’s or A∗’s) is created at an “ensemble”
of timest0 (t1

0 , t2
0 , . . . , t N

0 ) connected to an ensemble of subsequent decay events at
times in the rest frame of the decaying statet(t1, t2, . . . , tn). All of these timest i

0
are mapped to the mathematical timet = 0 which appears in the semigroup time
evolution (Bohm, 1999).

Given this interpretation, the fact that using the Hardy space hypothesis the
theory provides no prediction for probabilities witht < 0 is a sensible result
and this is our motivations for investigating the semigroup solutions (21) and



P1: JQX

International Journal of Theoretical Physics [ijtp] pp994-ijtp-473604 November 12, 2003 1:41 Style file version May 30th, 2002

2368 Harshman

Poincaré transformation properties (15,16). However, the standard hypothesis of
time-symmetric quantum mechanics (12), predicts time evolution of both the state
and observable for any positiveandnegative time. Consequently, the probabilities
for ψ(t) in φ (19) are given for any time−∞ < t < ∞. Further forφ, ψ ∈ H,
one can prove (Hegerfeldt, 1994, 1995, 1998) that

either Pφ(|ψ(t)〉〈ψ(t)|) is different from −∞ < t < ∞ (24a)

zero for (almost) all time

or Pφ(|ψ(t)〉〈ψ(t)|) ≡ 0 for all time −∞ < t < ∞. (24b)

In the case (24b), there are no transitions and thus no decays, Therefore, if one
wants transitions and chooses the solutions (20), then only the option (24a) remains,
but this has problematic consequences:

(i) It predicts nonzero probabilities for precursor events, such as decay prod-
ucts detected at timest < t0 before the state was prepared at timet0.

(ii) It predicts nonzero probabilities for detecting decay products for times
t < t0+ r/c for any finite but arbitrary distancer , or equivalently detec-
tion events at times and locationsr > c (t − t0) outside the forward light
cone, which violates Einstein causlity.

This latter consequence (ii) was the main concern of Hegerfeldt (1994, 1995,
1998) though the former consequence (i) more directly conflicts with the concept
of causality in general since it does not predict that “something propagates faster
than light” but that finite transition probability exists fort < t0. This is an obviously
unphysical prediction since a state needs to be prepared before an observable
can be measured in it. Buchholz and Yngvason (1994) question whether such a
simplistic construction for the transition probability is a physically realistic, useful
theoretical construct; within the framework of time asymmetric RHS quantum
theory (summarized by hypothesis (13) the transition amplitude has its common,
intuitive meaning.

The problem (i) is already solved in the nonrelativistic case by the semigroup
solutions (21) of the dynamical equation with the boundary condition (13). It is
also the special case (22) of the transformation property (15). However the problem
(ii) of probabilities “faster than light” can only be fully discussed in a relativistic
theory using Poincar´e transformations and not just by transformations generated
by the Hamiltonian.

Specializing (16) to space–time translations (1,x) = (1, (t, x)), we obtain
from the space–time translated probability amplitude in analogy to (22):

|〈ψ−(x)|p̂, ξ (sR, j )−〉 = 〈U (1, x)ψ−|p̂, ξ (sR, j )−〉
= e−i γ (MR−i0/2)(t−x·v)〈ψ−|p̂, ξ (sR, j )−〉 for all ψ− ∈ 8+ (25)
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but only fort ≥ 0 andt2 ≥ x2 = r 2/c2. Therefore the probability for a decay event
of the space–time translated decaying stateU×+ (1, (t, x))ψG,

|〈ψ−(x)|p̂, ξ (sR, j )−〉|2 = e−i γ (t−x·v)0|〈ψ−|p̂, ξ (sR, j )−〉|2, (26)

(and therefore detection of decay events) is only predicted to occur in the forward
light cone (18)

t ≥ 0 and t2 ≥ r 2/c2 or r/t < c. (27)

This means the probability for decay events cannot propagate faster than the
speed of light and Einstein causality is obeyed by Poincar´e semigroup evolutions.
Unitary representations of the Poincar´e group in the Hilbert space or in the Schwartz
space8, which fulfill (4), are not restricted to the forward light cone (18, 27) and
therefore do not fulfill Einstein causality.

The Hardy space hypothesis allows predictions of probabilities only for
Poincaré semigroup evolution in the forward light cone and as a consequence
both the causality conditions “no registration of an observable in a state before
that state has been prepared” and the Einstein causality condition “no propagation
of probabilities with a speed faster than light” are fulfilled by probabilities for
transitions between states and observables, and in particular for the relativistic
Gamow vector.
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